Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Nitric Oxide ; 136-137: 1-7, 2023 07 01.
Article in English | MEDLINE | ID: covidwho-2319499

ABSTRACT

BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , Humans , Middle Aged , Aged , Pulmonary Circulation , Prospective Studies , Pulmonary Gas Exchange , COVID-19/complications , SARS-CoV-2 , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Nitric Oxide , Hypoxia , Respiratory Insufficiency/drug therapy , Administration, Inhalation
2.
J Aerosol Med Pulm Drug Deliv ; 36(3): 112-126, 2023 06.
Article in English | MEDLINE | ID: covidwho-2302395

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening condition, characterized by diffuse inflammatory lung injury. Since the coronavirus disease 2019 (COVID-19) pandemic spread worldwide, the most common cause of ARDS has been the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both the COVID-19-associated ARDS and the ARDS related to other causes-also defined as classical ARDS-are burdened by high mortality and morbidity. For these reasons, effective therapeutic interventions are urgently needed. Among them, inhaled nitric oxide (iNO) has been studied in patients with ARDS since 1993 and it is currently under investigation. In this review, we aim at describing the biological and pharmacological rationale of iNO treatment in ARDS by elucidating similarities and differences between classical and COVID-19 ARDS. Thereafter, we present the available evidence on the use of iNO in clinical practice in both types of respiratory failure. Overall, iNO seems a promising agent as it could improve the ventilation/perfusion mismatch, gas exchange impairment, and right ventricular failure, which are reported in ARDS. In addition, iNO may act as a viricidal agent and prevent lung hyperinflammation and thrombosis of the pulmonary vasculature in the specific setting of COVID-19 ARDS. However, the current evidence on the effects of iNO on outcomes is limited and clinical studies are yet to demonstrate any survival benefit by administering iNO in ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Nitric Oxide , Administration, Inhalation , SARS-CoV-2 , Respiratory Distress Syndrome/drug therapy
3.
J Med Ethics ; 2023 Feb 21.
Article in English | MEDLINE | ID: covidwho-2259751

ABSTRACT

This paper combines considerations from ethics, medicine and public health policy to articulate and defend a systematic case for mask wearing mandates (MWM). The paper argues for two main claims of general interest in favour of MWM. First, MWM provide a more effective, just and fair way to tackle the ongoing COVID-19 pandemic than policy alternatives such as laissez-faire approaches, mask wearing recommendations and physical distancing measures. And second, the proffered objections against MWM may justify some exemptions for specific categories of individuals, but do not cast doubt on the justifiability of these mandates. Hence, unless some novel decisive objections are put forward against MWM, governments should adopt MWM.

4.
EBioMedicine ; 90: 104544, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2278991

ABSTRACT

BACKGROUND: Ventricular fibrillation (VF) waveform analysis has been proposed as a potential non-invasive guide to optimize timing of defibrillation. METHODS: The AMplitude Spectrum Area (AMSA) trial is an open-label, multicenter randomized controlled study reporting the first in-human use of AMSA analysis in out-of-hospital cardiac arrest (OHCA). The primary efficacy endpoint was the termination of VF for an AMSA ≥ 15.5 mV-Hz. Adult shockable OHCAs randomly received either an AMSA-guided cardiopulmonary resuscitation (CPR) or a standard-CPR. Randomization and allocation to trial group were carried out centrally. In the AMSA-guided CPR, an initial AMSA ≥ 15.5 mV-Hz prompted for immediate defibrillation, while lower values favored chest compression (CC). After completion of the first 2-min CPR cycle, an AMSA < 6.5 mV-Hz deferred defibrillation in favor of an additional 2-min CPR cycle. AMSA was measured and displayed in real-time during CC pauses for ventilation with a modified defibrillator. FINDINGS: The trial was early discontinued for low recruitment due to the COVID-19 pandemics. A total of 31 patients were recruited in 3 Italian cities, 19 in AMSA-CPR and 12 in standard-CPR, and included in the data analysis. No difference in primary outcome was observed between the two groups. Termination of VF occurred in 74% of patients in the AMSA-CPR compared to 75% in the standard CPR (OR 0.93 [95% CI 0.18-4.90]). No adverse events were reported. INTERPRETATION: AMSA was used prospectively in human patients during ongoing CPR. In this small trial, an AMSA-guided defibrillation provided no evidence of an improvement in termination of VF. TRIAL REGISTRATION: NCT03237910. FUNDING: European Commission - Horizon 2020; ZOLL Medical Corp., Chelmsford, USA (unrestricted grant); Italian Ministry of Health - Current research IRCCS.


Subject(s)
COVID-19 , Cardiopulmonary Resuscitation , Adult , Humans , Ventricular Fibrillation/therapy , Electric Countershock , Amsacrine
5.
JAMA Netw Open ; 5(10): e2238871, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2084948

ABSTRACT

Importance: Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. Objective: To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. Design, Setting, and Participants: This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. Exposures: COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). Main Outcomes and Measures: The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. Results: Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P < .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P < .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P < .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P < .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P < .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. Conclusions and Relevance: In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people.


Subject(s)
COVID-19 , Pneumonia , Humans , Male , Female , Middle Aged , Adult , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Critical Illness/therapy , COVID-19 Vaccines , Retrospective Studies , Cohort Studies , BNT162 Vaccine , Intensive Care Units , Pneumonia/epidemiology , Oxygen
6.
Front Med (Lausanne) ; 9: 994900, 2022.
Article in English | MEDLINE | ID: covidwho-2043491

ABSTRACT

Background: Respiratory physiotherapy is reported as safe and feasible in mechanically ventilated patients with severe Coronavirus Disease (COVID-19) admitted to Intensive Care Unit (ICU), but the short-term benefits remain unclear. Methods: We performed a retrospective observational study in four ICUs in Northern Italy. All patients with COVID-19 admitted to ICU and under invasive mechanical ventilation (MV) between March 1st and May 30th, 2020, were enrolled into the study. Overlap weighting based on the propensity score was used to adjust for confounding in the comparison of patients who had or had not been treated by physiotherapists. The primary outcome was the number of days alive and ventilator-free (VFDs). The secondary outcomes were arterial partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio (P/F) at ICU discharge, ICU length of stay, ICU and hospital mortality, and survival at 90 days. The trial protocol was registered on clinicaltrials.gov (NCT05067907). Results: A total of 317 patients were included in the analysis. The median VFDs was 18 days [interquartile range (IQR) 10; 24] in patients performing physiotherapy and 21 days (IQR 0; 26) in the group without physiotherapy [incidence rate ratio (IRR) 0.86, 95% confidence interval (CI): 0.78; 0.95]. The chance of 0 VFDs was lower for patients treated by physiotherapists compared to those who were not [odds ratio (OR) = 0.36, 95% CI: 0.18-0.71]. Survival at 90 days was 96.0% in the physiotherapy group and 70.6% in patients not performing physiotherapy [hazard ratio (HR) = 0.14, 95% CI: 0.03-0.71]. Number of VFDs was not associated with body mass index (BMI), sex, or P/F at ICU admission for individuals with at least 1 day off the ventilator. Conclusion: In patients with COVID-19 admitted to ICU during the first pandemic wave and treated by physiotherapists, the number of days alive and free from MV was lower compared to patients who did not perform respiratory physiotherapy. Survival at 90 days in the physiotherapy group was greater compared to no physiotherapy. These findings may be the starting point for further investigation in this setting.

7.
Am J Respir Crit Care Med ; 206(6): 799-800, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2038414
8.
BMC Anesthesiol ; 22(1): 187, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1962736

ABSTRACT

BACKGROUND: During the first coronavirus disease 2019 (COVID-19) pandemic wave, an unprecedented number of patients with respiratory failure due to a new, highly contagious virus needed hospitalization and intensive care unit (ICU) admission. The aim of the present study was to describe the communication and visiting policies of Italian intensive care units (ICUs) during the first COVID-19 pandemic wave and national lockdown and compare these data with prepandemic conditions. METHODS: A national web-based survey was conducted among 290 Italian hospitals. Each ICU (active between February 24 and May 31, 2020) was encouraged to complete an individual questionnaire inquiring the hospital/ICU structure/organization, communication/visiting habits and the role of clinical psychology prior to, and during the first COVID-19 pandemic wave. RESULTS: Two hundred and nine ICUs from 154 hospitals (53% of the contacted hospitals) completed the survey (202 adult and 7 pediatric ICUs). Among adult ICUs, 60% were dedicated to COVID-19 patients, 21% were dedicated to patients without COVID-19 and 19% were dedicated to both categories (Mixed). A total of 11,102 adult patients were admitted to the participating ICUs during the study period and only approximately 6% of patients received at least one visit. Communication with family members was guaranteed daily through an increased use of electronic devices and was preferentially addressed to the same family member. Compared to the prepandemic period, clinical psychologists supported physicians more often regarding communication with family members. Fewer patients received at least one visit from family members in COVID and mixed-ICUs than in non-COVID ICUs, l (0 [0-6]%, 0 [0-4]% and 11 [2-25]%, respectively, p < 0.001). Habits of pediatric ICUs were less affected by the pandemic. CONCLUSIONS: Visiting policies of Italian ICUs dedicated to adult patients were markedly altered during the first COVID-19 wave. Remote communication was widely adopted as a surrogate for family meetings. New strategies to favor a family-centered approach during the current and future pandemics are warranted.


Subject(s)
COVID-19 , Pandemics , Adult , Child , Communicable Disease Control , Communication , Humans , Intensive Care Units , Policy , Surveys and Questionnaires
9.
Ann Intensive Care ; 12(1): 35, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1785171

ABSTRACT

BACKGROUND: External chest-wall compression (ECC) is sometimes used in ARDS patients despite lack of evidence. It is currently unknown whether this practice has any clinical benefit in patients with COVID-19 ARDS (C-ARDS) characterized by a respiratory system compliance (Crs) < 35 mL/cmH2O. OBJECTIVES: To test if an ECC with a 5 L-bag in low-compliance C-ARDS can lead to a reduction in driving pressure (DP) and improve gas exchange, and to understand the underlying mechanisms. METHODS: Eleven patients with low-compliance C-ARDS were enrolled and underwent 4 steps: baseline, ECC for 60 min, ECC discontinuation and PEEP reduction. Respiratory mechanics, gas exchange, hemodynamics and electrical impedance tomography were recorded. Four pigs with acute ARDS were studied with ECC to understand the effect of ECC on pleural pressure gradient using pleural pressure transducers in both non-dependent and dependent lung regions. RESULTS: Five minutes of ECC reduced DP from baseline 14.2 ± 1.3 to 12.3 ± 1.3 cmH2O (P < 0.001), explained by an improved lung compliance. Changes in DP by ECC were strongly correlated with changes in DP obtained with PEEP reduction (R2 = 0.82, P < 0.001). The initial benefit of ECC decreased over time (DP = 13.3 ± 1.5 cmH2O at 60 min, P = 0.03 vs. baseline). Gas exchange and hemodynamics were unaffected by ECC. In four pigs with lung injury, ECC led to a decrease in the pleural pressure gradient at end-inspiration [2.2 (1.1-3) vs. 3.0 (2.2-4.1) cmH2O, P = 0.035]. CONCLUSIONS: In C-ARDS patients with Crs < 35 mL/cmH2O, ECC acutely reduces DP. ECC does not improve oxygenation but it can be used as a simple tool to detect hyperinflation as it improves Crs and reduces Ppl gradient. ECC benefits seem to partially fade over time. ECC produces similar changes compared to PEEP reduction.

12.
Intensive Crit Care Nurs ; 69: 103158, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1487736

ABSTRACT

OBJECTIVE: To investigate short and long-term complications due to standard (≤24 hours) and extended (>24 hours) prone position in COVID-19 patients. METHODS: Retrospective cohort study conducted in an Italian general intensive care unit. We enrolled patients on invasive mechanical ventilation and treated with prone positioning. We recorded short term complications from the data chart and long-term complications from the scheduled follow-up visit, three months after intensive care discharge. RESULTS: A total of 96 patients were included in the study. Median time for each prone positioning cycle (302 cycles) was equal to 18 (16-32) hours. In 37 (38%) patients at least one cycle of extended pronation was implemented. Patients with at least one pressure sore due to prone position were 38 (40%). Patients with pressure sores showed a statistically significative difference in intensive care length of stay, mechanical ventilation days, numbers of prone position cycles, total time spent in prone position and the use of extended prone position, compared to patients without pressure sores. All lesions were low grade. Cheekbones (18%) and chin (10%) were the most affected sites. Follow-up visit, scheduled three months after intensive care discharge, was possible in 58 patients. All patients were able to have all 12 muscle groups examined using theMedical Research Council scale examination. No patient reported sensory loss or presence of neuropathic pain for upper limbs. CONCLUSIONS: Extended prone position is feasible and might reduce the workload on healthcare workers without significant increase of major prone position related complications.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Patient Positioning/adverse effects , Prone Position , Respiration, Artificial/adverse effects , Retrospective Studies , SARS-CoV-2
13.
JAMA ; 323(16): 1574-1581, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453471

ABSTRACT

Importance: In December 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged in China and has spread globally, creating a pandemic. Information about the clinical characteristics of infected patients who require intensive care is limited. Objective: To characterize patients with coronavirus disease 2019 (COVID-19) requiring treatment in an intensive care unit (ICU) in the Lombardy region of Italy. Design, Setting, and Participants: Retrospective case series of 1591 consecutive patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinator center (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network and treated at one of the ICUs of the 72 hospitals in this network between February 20 and March 18, 2020. Date of final follow-up was March 25, 2020. Exposures: SARS-CoV-2 infection confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay of nasal and pharyngeal swabs. Main Outcomes and Measures: Demographic and clinical data were collected, including data on clinical management, respiratory failure, and patient mortality. Data were recorded by the coordinator center on an electronic worksheet during telephone calls by the staff of the COVID-19 Lombardy ICU Network. Results: Of the 1591 patients included in the study, the median (IQR) age was 63 (56-70) years and 1304 (82%) were male. Of the 1043 patients with available data, 709 (68%) had at least 1 comorbidity and 509 (49%) had hypertension. Among 1300 patients with available respiratory support data, 1287 (99% [95% CI, 98%-99%]) needed respiratory support, including 1150 (88% [95% CI, 87%-90%]) who received mechanical ventilation and 137 (11% [95% CI, 9%-12%]) who received noninvasive ventilation. The median positive end-expiratory pressure (PEEP) was 14 (IQR, 12-16) cm H2O, and Fio2 was greater than 50% in 89% of patients. The median Pao2/Fio2 was 160 (IQR, 114-220). The median PEEP level was not different between younger patients (n = 503 aged ≤63 years) and older patients (n = 514 aged ≥64 years) (14 [IQR, 12-15] vs 14 [IQR, 12-16] cm H2O, respectively; median difference, 0 [95% CI, 0-0]; P = .94). Median Fio2 was lower in younger patients: 60% (IQR, 50%-80%) vs 70% (IQR, 50%-80%) (median difference, -10% [95% CI, -14% to 6%]; P = .006), and median Pao2/Fio2 was higher in younger patients: 163.5 (IQR, 120-230) vs 156 (IQR, 110-205) (median difference, 7 [95% CI, -8 to 22]; P = .02). Patients with hypertension (n = 509) were older than those without hypertension (n = 526) (median [IQR] age, 66 years [60-72] vs 62 years [54-68]; P < .001) and had lower Pao2/Fio2 (median [IQR], 146 [105-214] vs 173 [120-222]; median difference, -27 [95% CI, -42 to -12]; P = .005). Among the 1581 patients with ICU disposition data available as of March 25, 2020, 920 patients (58% [95% CI, 56%-61%]) were still in the ICU, 256 (16% [95% CI, 14%-18%]) were discharged from the ICU, and 405 (26% [95% CI, 23%-28%]) had died in the ICU. Older patients (n = 786; age ≥64 years) had higher mortality than younger patients (n = 795; age ≤63 years) (36% vs 15%; difference, 21% [95% CI, 17%-26%]; P < .001). Conclusions and Relevance: In this case series of critically ill patients with laboratory-confirmed COVID-19 admitted to ICUs in Lombardy, Italy, the majority were older men, a large proportion required mechanical ventilation and high levels of PEEP, and ICU mortality was 26%.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Critical Care/statistics & numerical data , Hospital Mortality , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/epidemiology , Positive-Pressure Respiration/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19 , Comorbidity , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Critical Illness/therapy , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Sex Distribution , Young Adult
14.
Respir Care ; 66(12): 1797-1804, 2021 12.
Article in English | MEDLINE | ID: covidwho-1436182

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic increased the number of patients needing invasive mechanical ventilation, either through an endotracheal tube or through a tracheostomy. Tracheomalacia is a rare but potentially severe complication of mechanical ventilation, which can significantly complicate the weaning process. The aim of this study was to describe the strategies of airway management in mechanically ventilated patients with respiratory failure due to SARS-CoV-2, the incidence of severe tracheomalacia, and investigate the factors associated with its occurrence. METHODS: This retrospective, single-center study was performed in an Italian teaching hospital. All adult subjects admitted to the ICU between February 24, 2020, and June 30, 2020, treated with invasive mechanical ventilation for respiratory failure caused by SARS-CoV-2 were included. Clinical data were collected on the day of ICU admission, whereas information regarding airway management was collected daily. RESULTS: A total of 151 subjects were included in the study. On admission, ARDS severity was mild in 21%, moderate in 62%, and severe in 17% of the cases, with an overall mortality of 40%. A tracheostomy was performed in 73 (48%), open surgical technique in 54 (74%), and percutaneous Ciaglia technique in 19 (26%). Subjects who had a tracheostomy performed had, compared to the other subjects, a longer duration of mechanical ventilation and longer ICU and hospital stay. Tracheomalacia was diagnosed in 8 (5%). The factors associated with tracheomalacia were female sex, obesity, and tracheostomy. CONCLUSIONS: In our population, approximately 50% of subjects with ARDS due to SARS-CoV-2 were tracheostomized. Tracheostomized subjects had a longer ICU and hospital stay. In our population, 5% were diagnosed with tracheomalacia. This percentage is 10 times higher than what is reported in available literature, and the underlying mechanisms are not fully understood.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Tracheomalacia , Adult , Female , Humans , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2 , Tracheostomy/adverse effects
15.
Biomedicines ; 9(9)2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1408456

ABSTRACT

The synergic combination of D-dimer (as proxy of thrombotic/vascular injury) and static compliance (as proxy of parenchymal injury) in predicting mortality in COVID-19-ARDS has not been systematically evaluated. The objective is to determine whether the combination of elevated D-dimer and low static compliance can predict mortality in patients with COVID-19-ARDS. A "training sample" (March-June 2020) and a "testing sample" (September 2020-January 2021) of adult patients invasively ventilated for COVID-19-ARDS were collected in nine hospitals. D-dimer and compliance in the first 24 h were recorded. Study outcome was all-cause mortality at 28-days. Cut-offs for D-dimer and compliance were identified by receiver operating characteristic curve analysis. Mutually exclusive groups were selected using classification tree analysis with chi-square automatic interaction detection. Time to death in the resulting groups was estimated with Cox regression adjusted for SOFA, sex, age, PaO2/FiO2 ratio, and sample (training/testing). "Training" and "testing" samples amounted to 347 and 296 patients, respectively. Three groups were identified: D-dimer ≤ 1880 ng/mL (LD); D-dimer > 1880 ng/mL and compliance > 41 mL/cmH2O (LD-HC); D-dimer > 1880 ng/mL and compliance ≤ 41 mL/cmH2O (HD-LC). 28-days mortality progressively increased in the three groups (from 24% to 35% and 57% (training) and from 27% to 39% and 60% (testing), respectively; p < 0.01). Adjusted mortality was significantly higher in HD-LC group compared with LD (HR = 0.479, p < 0.001) and HD-HC (HR = 0.542, p < 0.01); no difference was found between LD and HD-HC. In conclusion, combination of high D-dimer and low static compliance identifies a clinical phenotype with high mortality in COVID-19-ARDS.

17.
Intensive Care Med ; 47(9): 995-1008, 2021 09.
Article in English | MEDLINE | ID: covidwho-1349283

ABSTRACT

PURPOSE: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). METHODS: In this retrospective-prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. RESULTS: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55-69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89-175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil-lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. CONCLUSION: Daily values or trends over time of parameters associated with acute organ dysfunction, acid-base derangement, coagulation impairment, or systemic inflammation were associated with patient survival.


Subject(s)
COVID-19 , Critical Illness , Aged , Humans , Intensive Care Units , Italy , Male , Middle Aged , Prospective Studies , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2
18.
World J Emerg Surg ; 16(1): 39, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1318287

ABSTRACT

BACKGROUNDS: The COVID-19 pandemic drastically strained the health systems worldwide, obligating the reassessment of how healthcare is delivered. In Lombardia, Italy, a Regional Emergency Committee (REC) was established and the regional health system reorganized, with only three hospitals designated as hubs for trauma care. The aim of this study was to evaluate the effects of this reorganization of regional care, comparing the distribution of patients before and during the COVID-19 outbreak and to describe changes in the epidemiology of severe trauma among the two periods. METHODS: A cohort study was conducted using retrospectively collected data from the Regional Trauma Registry of Lombardia (LTR). We compared the data of trauma patients admitted to three hub hospitals before the COVID-19 outbreak (September 1 to November 19, 2019) with those recorded during the pandemic (February 21 to May 10, 2020) in the same hospitals. Demographic data, level of pre-hospital care (Advanced Life Support-ALS, Basic Life Support-BLS), type of transportation, mechanism of injury (MOI), abbreviated injury score (AIS, 1998 version), injury severity score (ISS), revised trauma score (RTS), and ICU admission and survival outcome of all the patients admitted to the three trauma centers designed as hubs, were reviewed. Screening for COVID-19 was performed with nasopharyngeal swabs, chest ultrasound, and/or computed tomography. RESULTS: During the COVID-19 pandemic, trauma patients admitted to the hubs increased (46.4% vs 28.3%, p < 0.001) with an increase in pre-hospital time (71.8 vs 61.3 min, p < 0.01), while observed in hospital mortality was unaffected. TRISS, ISS, AIS, and ICU admission were similar in both periods. During the COVID-19 outbreak, we observed substantial changes in MOI of severe trauma patients admitted to three hubs, with increases of unintentional (31.9% vs 18.5%, p < 0.05) and intentional falls (8.4% vs 1.2%, p < 0.05), whereas the pandemic restrictions reduced road- related injuries (35.6% vs 60%, p < 0.05). Deaths on scene were significantly increased (17.7% vs 6.8%, p < 0.001). CONCLUSIONS: The COVID-19 outbreak affected the epidemiology of severe trauma patients. An increase in trauma patient admissions to a few designated facilities with high level of care obtained satisfactory results, while COVID-19 patients overwhelmed resources of most other hospitals.


Subject(s)
COVID-19/epidemiology , Delivery of Health Care/trends , Intensive Care Units/statistics & numerical data , Pandemics , Registries , Trauma Centers/statistics & numerical data , Wounds and Injuries/epidemiology , Adult , Comorbidity , Female , Hospital Mortality/trends , Hospitalization/trends , Humans , Injury Severity Score , Italy , Male , Middle Aged , Retrospective Studies , Wounds and Injuries/diagnosis , Wounds and Injuries/therapy
19.
Front Pharmacol ; 12: 574091, 2021.
Article in English | MEDLINE | ID: covidwho-1278433

ABSTRACT

The severe acute respiratory syndrome coronavirus SARS-CoV2 is spreading over millions of people worldwide, leading to thousands of deaths, even among the healthcare providers. Italy has registered the deaths of 337 physicians and more than 200 nurses as of March 14, 2021. Anesthesiologists are at higher risk as they are the care providers in both ICU and operating rooms.Although the vaccination of healthcare providers has been the prioirity, physicians are still continually exposed to the virus and potentially risk contagion and must thus protect themselves and their patients from the risks of infection while providing the best care to their surgical patients.Regional anesthesia allows for a reduction in airway manipulation, reducing environmental contamination as a result. Furthermore, regional anesthesia reduces the opioid requirements as well as the muscle paralysis due to muscle-relaxants and should be recommended whenever possible in COVID-19 patients. Our aim is to evaluate the advantages and criticisms of regional anesthesia in the management of surgical patients in the pandemic age.

SELECTION OF CITATIONS
SEARCH DETAIL